首页 综合 > 正文

alpha go和柯洁的对弈(alpha go)

大家好,关于alpha go和柯洁的对弈,alpha go很多人还不知道,今天小铁来为大家解答以上问题,现在让我们一起来看看吧!

1、 谷歌阿尔法围棋是什么?作为一种人工智能的AlphaGo,和国际商用机器公司在上个世纪打败国际象棋大师卡斯帕罗夫的深蓝超级计算机,以及当代的苹果Siri、Google Now有着显著的区别。要解读AlphaGo,首先我们需要了解阿尔法围棋背后到底是一个什么东西。

2、 其实谷歌阿尔法围棋背后是一套神经网络系统,由谷歌2014年收购的英国人工智能公司深度思维开发。这个系统和深蓝不同,不是一台超级计算机,而是一个由许多个数据中心作为节点相连,每个节点内有着多台超级计算机的神经网络系统。就像人脑,是由50-100 亿个神经元所组成的,这也是为什么这种机器学习架构被称为神经网络。

3、 你可以将阿尔法围棋理解为《超验骇客》(超越)里约翰尼德普饰演的人工智能,而它所控制的超级计算机,就像影片里被人工智能心控的人类一样,共同为一种蜂群思维(蜂巢思维)服务。

4、 《超验骇客》 中,被人工智能控制的工人马丁。马丁没有所想,但他的所见将会被人工智能直接获取。

5、 阿尔法围棋是在这个神经网络系统上,专为下围棋(去)而开发出的一个实例。然而,虽然名字已经介绍了它的功能,AlphaGo背后的神经网络系统却适合用于任何智力竞技类项目。

6、 这个系统的基础名叫卷积神经网络(卷积神经网络,CNN),这是一种过去在大型图像处理上有着优秀表现的神经网络,经常被用于人工智能图像识别,比如谷歌的图片搜索、百度的识图功能都对卷积神经网络有所运用。这也解释了为什么阿尔法围棋是基于卷积神经网络的,毕竟围棋里胜利的原理是:

7、 对弈双方在棋盘网格的交叉点上交替放置黑色和白色的棋子。落子完毕后,棋子不能移动。对弈過程中围地吃子,以所围"地"的大小决定胜负。

8、 阿尔法围棋背后的系统还借鉴了一种名为深度强化学习(深度Q学习,DQN)的技巧。强化学习的灵感来源于心理学中的行为主义理论,即有机体如何在环境给予的奖励或惩罚的刺激下,逐步形成对刺激的预期,产生能获得最大利益的习惯性行为。不仅如此,AlphaGo借鉴了蒙特卡洛树搜索算法(蒙特卡罗树搜索),在判断当前局面的效用函数(价值函数)和决定下一步的策略函数(策略功能)上有着非常好的表现,远超过上一个能够和人类棋手旗鼓相当的围棋程序。

9、 深度思维训练阿尔法围棋的步骤说明:10 万盘高手棋谱作为初始数据,进行分类后用于训练策略函数;然后跟自己下棋;强化学习训练策略函数,继续下棋;下了3000 万步后进行回归分析,整合蒙特卡洛树搜索模型,训练效用函数。

10、 效用函数和策略函数,分别对应阿尔法围棋的两个思考维度:目前棋盘的现状,和自己/对手下一步的走向。

11、 阿尔法围棋所采用的网络是一种具有广泛适应性的强化学习模型,说白了就是不用修改代码,你让它下围棋它能下围棋,你让它在红白机上玩超级玛丽和太空侵略者,它也不会手生。作为一个基于卷积神经网络、采用了强化学习模型的人工智能,AlphaGo的学习能力很强,往往新上手一个项目,玩上几局就能获得比世界上最厉害的选手还强的实力。

12、 2014 年,已经被谷歌收购的深度思维,用五款雅达利(雅达利)游戏乓,打砖块、太空侵略者、海底救人、光束骑士分别测试了自己开发的人工智能的性能,结果发现:在两三盘游戏后,神经网络的操控能力已经远超世界上任何一位已知的游戏高手。

13、 深度思维用同样的一套人工智能,不调整代码就去测试各种各样的智力竞技项目,取得了优异的战绩,足以证明今天坐在李世石面前的AlphaGo,拥有多强的学习能力。

14、 李世石执黑子,AlphaGo执白子。大约进行了85 分钟时进入休息阶段

15、 在此之前,深度思维进行过的无数虚拟棋局训练,以及去年击败欧洲围棋冠军樊麾二段的经验让阿尔法围棋已经训练出了顶尖的弈技,极有可能高于世界上任何已知的围棋高手。

16、 阿尔法围棋的水平大约在专业六段左右。再和其他围棋程序的495 盘较量中胜494 盘;在让四子的前提下仍有75% 的胜率。

17、 尽管棋盘上风云变化,早在本次开战前,AlphaGo跟李世石就已不在同一起跑线上了。根据深度思维透露的情况,从去年10 月5-0 击败樊麾二段到现在,AlphaGo已经在神经网络容量(数据容量)以及自己跟自己下棋用于训练的数据质量上有了较大的提升。而且神经网络的分布式计算延迟也得到了优化,最终使得阿尔法围棋能够在两小时的限定时间内击败了李世石九段。

18、 阿尔法围棋只是深度思维证明自己的一个工具。你也可以将这次和李世石的对局理解为谷歌的公关策略。

19、 2014 年,这家公司曾经在其官网上写道:DeepMind致力于用研究深度学习的方式去真正了解智慧(求解智能).但对于深度思维和谷歌来说,打造阿尔法围棋以及其他人工智能神经网络不是终点

20、 将机器学习和神经科学进行结合,打造出一种"一般用途的学习算法"。通过这种算法,深度思维和谷歌希望能够将智能"定型化",理解智能是什么,进而更好的帮助人类理解大脑DeepMind联合创始人之一的戴密斯哈萨比斯曾经写道:

21、 用算法将智慧提炼出来,有可能成为理解人类思维最神秘原理的最佳方式。

22、 试图将智能提取到算法结构中,可能是理解我们大脑中一些持久奥秘的最佳途径。

23、 在谷歌收购深度思维前,收购条款中的一项就是谷歌必须成立人工智能道德委员会。因此,在目前阶段人们不必担心这样的人工智能最终杀死或统治人类。但至少,人工智能在围棋这样的智力类竞技项目上击败人类,是已经注定的事情。

24、 作为一种决策树巨大的游戏,围棋本来适合人脑思考,不适合机器运算。但DeepMind AI的方向就是模仿人脑思考,用神经网络"重现"智慧。

本文讲解到此结束,希望对你有所帮助。

郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,多谢。