首页 科技 > 正文

人工智能准备在阿片类药物成瘾的战争中发挥关键作用

很多文章的报道都是由微观而宏观,今日小编讲给大家带来的关于人工智能准备在阿片类药物成瘾的战争中发挥关键作用的资讯也不例外,希翼可以在一定的程度上开阔你们的视野!y有对人工智能准备在阿片类药物成瘾的战争中发挥关键作用这篇文章感兴趣的小伙伴可以一起来看看

三种机器学习算法已识别出可能在手术后遭受极度痛苦的患者,每个患者的准确率约为80%。预测性协助可能会帮助医生针对惊险和易上瘾的阿片类药物适当地制定替代性的疼痛治理计划。

首席研究作者,哈佛大学医学博士Mieke Soens对与会人员说,他的团队计划将这些模型与Brigham and Women's Hospital的EHR进行整合,以“为每位患者提供术后疼痛的预测。”

人工智能准备在阿片类药物成瘾的战争中发挥关键作用

为了建立他们的模型,Soens和同事们回忆了来自近6,000名不同手术类别的术后患者的数据。他们发现,这些患者中约有22%在手术后的前24小时内接受了大剂量的吗啡毫克当量。

接下来,他们咨询了疼痛护理专家,并搜索了文献,提出了163种可能预示严峻的术后疼痛的因素。

借助这些洞察力,该团队构建了三个模型-后勤回归,随机森林和人工神经网络-能够扫瞄患者的病历并将163个因素修剪为惟独最强烈的预测性。

将模型的预测与相同患者中的阿片类药物实际使用量进行比较,Soens及其同事发现,这三者在确定哪些患者遭受最大疼痛并需要使用更大剂量的阿片类药物方面的准确度约为80%。

“电子病历是珍贵且未被充分利用的患者数据来源,可以有效地用于改善患者的生活,” Soens在演讲后发表的准备好的讲话中说道。“有选择地识别通常在手术后需要大剂量阿片类药物的患者,对于减少滥用阿片类药物的重要性很重要。”

郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,多谢。