首页 互联网 > 正文

函数的有界性定义(函数的有界性)

大家好,小甜来为大家解答以下的问题,关于函数的有界性定义,函数的有界性这个很多人还不知道,现在让我们一起来看看吧!

1、方法有3个:理论法:若f(x)在定义域[a,b]上连续,或者放宽到常义可积(有限个第一类间断点),则f(x)在[a,b]上必然有界。

2、2、计算法:切分(a,b)内连续limx→a+f(x)存在limx→a+f(x)存在;limx→b−f(x)存在limx→b−f(x)存在 则f(x)在定义域[a,b]内有界。

3、3、运算规则判定:在边界极限不存在时有界函数 ±± 有界函数 = 有界函数 (有限个,基本不会有无穷个,无穷是个难分高低的状态)有界 x 有界 = 有界。

4、扩展资料:函数值在某一个有限的范围内,即L1≤y≤L2,其中L1;L2是常数。

5、注意:①L1为下界,L2为上界②上界与下界同时存在才称之为有界 ③要看清楚题目中所给的范围例如(1)y=sin x 在定义域上是有界的。

6、因为其对应的函数值都会满足:-1≤y≤1。

7、(2)y=ln x在定义域上是无界的。

8、因为其对应的函数值都会满足:y∈R。

9、但在定义域内的任何一个有限区间。

10、如 (1,5)上,函数则是有界的。

11、因为其对应的函数值都会满足:0<y<ln 5。

12、参考资料:百度百科-有界性定理。

本文分享完毕,希望对大家有所帮助。

郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,多谢。